منابع مشابه
The current provided by oxygen-reducing microbial cathodes is related to the composition of their bacterial community.
Oxygen reducing biocathodes were formed from sludge under constant polarization at -0.2 and +0.4V/SCE. Under chronoamperometry at pH10.3 ± 0.3, current densities of 0.21 ± 0.03 and 0.12 ± 0.01 Am(-2) were displayed at -0.2V/SCE by the biocathodes formed at -0.2 and 0.4V/SCE, respectively. Voltammetry revealed similar general characteristics for all biocathodes and higher diffusion-limited curre...
متن کاملFermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats
Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB). However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico-permanently submerged Microcoleus microbial mat (GN-S), and int...
متن کاملEucaryotic diversity in a hypersaline microbial mat.
To determine the eucaryotic diversity of the hypersaline Guerrero Negro microbial mat, we amplified 18S rRNA genes from DNA extracted from this mat and constructed and analyzed clone libraries. The extent of eucaryotic diversity detected was remarkably low, only 15 species among 890 clones analyzed. Six eucaryotic kingdoms were represented, as well as a novel cluster of sequences. Nematode sequ...
متن کاملBacillamides from a hypersaline microbial mat bacterium.
Chemical studies of a Bacillus endophyticus isolated from a Bahamian hypersaline microbial mat led to the isolation of bacillamides B and C, new tryptamide thiazole metabolites. Bioassay-guided fractionation using a HPLC-UV-MS bioassay technique enabled the detection of these trace fermentation products, and their total structures were elucidated by combined spectroscopic techniques.
متن کاملOxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells.
Sediment microbial fuel cells (SMFCs) have been used as renewable power sources for sensors in fresh and ocean waters. Organic compounds at the anode drive anodic reactions, while oxygen drives cathodic reactions. An understanding of oxygen reduction kinetics and the factors that determine graphite cathode performance is needed to predict cathodic current and potential losses, and eventually to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioresource Technology
سال: 2021
ISSN: 0960-8524
DOI: 10.1016/j.biortech.2020.124165